Symbolic

 SYNONYMS
What's the issue?

When students are drilled, and undertake practice using algebraic expressions which always employ the same letters, they may not recognize a familiar rule if a different letter is substituted.

For example: Many students who rote learn $y=m x+c$, or any one of the common forms, as a general rule for a linear function do not also recognize its 'symbolic synonyms' $y=\mathrm{m} x+\mathrm{b}, y=\mathrm{a} x+\mathrm{b}$ or even less likely $y=\mathrm{a}+\mathrm{b} x$. Later, in statistics $y=\mathrm{b}_{0}+\mathrm{b}_{1} x$ is often viewed as a new mystery.

Mishaps? Perhaps not...

This issue is long lasting and afflicts even a number of our best maths students. As a University tutor, whom we interviewed, said of their first year mathematics students:
"Using a different letter upsets them, you know, a different parameter
If you start with y as a function of x and you change the problem to x is a function of t, you're in trouble if I use p is a function of q or something that's really not common, it's like they cannot do the question anymore...they know how to solve a problem with y in terms of x."

Mishaps in school maths...

Similarly, in many classrooms the name Pythagoras brings forth a chorus of $a^{2}+b^{2}=c^{2}$. Using different letters or naming the right-angled triangle such that " c " is not on the hypotenuse causes confusion and anxiety.

Later students do not recognize other applications of the theorem. For example: $\sin ^{2} \theta+\cos ^{2} \theta=1$

Ideas from the classroom...

- Resist the temptation to always stick to familiar letters and reduce immediate stress. Why not?? This sets students up for future failure.
- Deliberately practice recognition of the pattern for a rule using a variety of the commonly used forms - not just one.
- Have students keep a word \& symbol glossary: add the symbolic synonyms when encountered
- Sometimes deliberately have students use different letters. Draw letters from a hat so that different students work with different letters or the class has "letters for today".
- Play "matching cards" games and include symbolic synonyms in multiple representation tasks.

$$
y=3 x+2
$$

$y=2 x+3$

$$
y=(3 / 2) x+3
$$

$y=a x+b$ where $\mathrm{a}=2$ $\mathrm{~b}=3$

p	q
-1	1
0	3
1	5

For more ideas on matching cards see:
Malcolm Swan (2008) The Design of Multiple Representation Tasks to Foster conceptual Development http://tsg.icme11.org/document/get/289

Did you enjoy this article?

Read more ideas in our other articles:
\checkmark Communicating Like A Mathematician
\checkmark Met-Before

This research project has been funded by the Australian Research Council: DP150103315
The project team thanks Emily Begg for her permission to use her artwork in this article.

